翻訳と辞書
Words near each other
・ Xiaolan Bao
・ Xiaolan Railway Station
・ Xiaolangdi Dam
・ Xiaoli
・ Xiaoli Feidao
・ Xiaoli, Hebei
・ Xiaoli, Shandong
・ Xiaolian
・ Xiaoliang
・ Xiaoliang Sunney Xie
・ Xiaolin
・ Xiaolin Chronicles
・ Xiaolin Showdown
・ Xiaolin Showdown (video game)
・ Xiaolin Showdown Trading Card Game
Xiaolin Wu's line algorithm
・ Xiaoling
・ Xiaolingwei
・ Xiaolingwei Station
・ Xiaoliuqiu
・ Xiaolongbao
・ Xiaolongkan Station
・ Xiaolongnü
・ Xiaolongwan Station
・ Xiaolu Guo
・ Xiaolukou
・ Xiaoluren
・ Xiaoman
・ Xiaomi
・ Xiaomi Mi 1


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Xiaolin Wu's line algorithm : ウィキペディア英語版
Xiaolin Wu's line algorithm

Xiaolin Wu's line algorithm is an algorithm for line antialiasing, which was presented in the article ''An Efficient Antialiasing Technique'' in the July 1991 issue of ''Computer Graphics'', as well as in the article ''Fast Antialiasing'' in the June 1992 issue of ''Dr. Dobb's Journal''.
Bresenham's algorithm draws lines extremely quickly, but it does not perform anti-aliasing. In addition, it cannot handle any cases where the line endpoints do not lie exactly on integer points of the pixel grid. A naive approach to anti-aliasing the line would take an extremely long time. Wu's algorithm is comparatively fast, but is still slower than Bresenham's algorithm. The algorithm consists of drawing pairs of pixels straddling the line, each coloured according to its distance from the line. Pixels at the line ends are handled separately. Lines less than one pixel long are handled as a special case.
An extension to the algorithm for circle drawing was presented by Xiaolin Wu in the book ''Graphics Gems II''. Just like the line drawing algorithm is a replacement for Bresenham's line drawing algorithm, the circle drawing algorithm is a replacement for Bresenham's circle drawing algorithm.

function plot(x, y, c) is
plot the pixel at (x, y) with brightness c (where 0 ≤ c ≤ 1)
// integer part of x
function ipart(x) is
return int(x)
function round(x) is
return ipart(x + 0.5)
// fractional part of x
function fpart(x) is
if x < 0
return 1 - (x - floor(x))
return x - floor(x)
function rfpart(x) is
return 1 - fpart(x)
function drawLine(x0,y0,x1,y1) is
boolean steep := abs(y1 - y0) > abs(x1 - x0)

if steep then
swap(x0, y0)
swap(x1, y1)
end if
if x0 > x1 then
swap(x0, x1)
swap(y0, y1)
end if

dx := x1 - x0
dy := y1 - y0
gradient := dy / dx

// handle first endpoint
xend := round(x0)
yend := y0 + gradient
* (xend - x0)
xgap := rfpart(x0 + 0.5)
xpxl1 := xend // this will be used in the main loop
ypxl1 := ipart(yend)
if steep then
plot(ypxl1, xpxl1, rfpart(yend)
* xgap)
plot(ypxl1+1, xpxl1, fpart(yend)
* xgap)
else
plot(xpxl1, ypxl1 , rfpart(yend)
* xgap)
plot(xpxl1, ypxl1+1, fpart(yend)
* xgap)
end if
intery := yend + gradient // first y-intersection for the main loop

// handle second endpoint
xend := round(x1)
yend := y1 + gradient
* (xend - x1)
xgap := fpart(x1 + 0.5)
xpxl2 := xend //this will be used in the main loop
ypxl2 := ipart(yend)
if steep then
plot(ypxl2 , xpxl2, rfpart(yend)
* xgap)
plot(ypxl2+1, xpxl2, fpart(yend)
* xgap)
else
plot(xpxl2, ypxl2, rfpart(yend)
* xgap)
plot(xpxl2, ypxl2+1, fpart(yend)
* xgap)
end if

// main loop
for x from xpxl1 + 1 to xpxl2 - 1 do
begin
if steep then
plot(ipart(intery) , x, rfpart(intery))
plot(ipart(intery)+1, x, fpart(intery))
else
plot(x, ipart(intery), rfpart(intery))
plot(x, ipart(intery)+1, fpart(intery))
end if
intery := intery + gradient
end
end function

==References==

*
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Xiaolin Wu's line algorithm」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.